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On the Toggle Register Polynomial
WAYNE STAHNKE

11434 McCune Avenue, Los Angeles, California 90066

A toggle register is a loop of n binary storage elements, of which ¢ are trigger
flip-flops and the remainder are delay flip-flops. If 0 < ¢ < n, the state structure
of a toggle register consists of pure cycles, the length and number of which can
be determined from the properties of the toggle register polynomial x™ --

(x + 1)! over the field of two elements. For certain values of n and ¢ the toggle
register polynomial is primitive, and a corresponding toggle register generates
a binary sequence of period 2" — 1 that exhibits randomness properties. In
this paper we investigate the properties of the toggle register polynomial. The
results can be summarized as follows: x® + (x + 1) is irreducible if and only if
x" + x* + 1 1s irreducible and (n,t) = 1; 2™ + (x -+ 1)* is primitive if and
only if x" 4+ x* -+ 1 1s primitive and (2" — 1,¢) = 1. The accompanying
list gives all irreducible toggle register polynomials and their indices through
degree 137.

INTRODUCTION

In attempting to generate binary sequences with desirable properties, partic-
ularly binary pseudorandom sequences, several investigators have studied
trinomials over the field of two elements. This study was motivated by the fact
that a trinomial of degree n corresponds to a logical network that consists of only
n delay flip-flops and a single two-input modulo-two adder (Golomb, 1967).
However, there is a simpler configuration of logical elements that can generate
sequences with desirable properties. This 1s the toggle register, which is a loop
of # binary storage elements, of which ¢ are trigger flip-flops and the remainder
are delay flip-flops. The loop may contain an arbitrary number of complementa-
tions. A trigger flip-flop is a binary storage element whose next output differs
from its present output if its present input is a 1; if its present input is a 0,
its output does not change. A type of universal flip-flop known as a “JK flip-flop”
can function as either a trigger flip-flop or a delay flip-flop; thus, a toggle register
can be constructed from JK flip-flops only.

In their paper on toggle registers, Alltop et al. (1968) showed that for 0 <t < n,
the state diagram of a toggle register is partitioned into disjoint cycles whose
lengths and number depend only on 7z and ¢ (Alltop et al., 1968, Theorem 1,
p- 194). Thus, for the purpose of studying the state structure, an arbitrary
toggle register may be replaced by the related linear toggle register that has the
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same arrangement of trigger flip-flops and delay flip-flops, but does not contain
any complementations. If this is done, the individual columns of the state cycles
all satisfy the difference equation that corresponds to the polynomial
xHx + 1)t + 1 (Alltop et al., 1968, Theorem 2, p. 195). Therefore, the study
of the cycle structure of toggle registers reduces to the study of the properties
of f(x) = a" (x4 1)+ 1 (see Elspas, 1959). The reciprocal polynomial
x"f(1/x) = x™ + (x + 1)t retains all of the properties of the original polynomial,
and has the advantage that it is mathematically more tractable. This polynomial
is studied here, with ¢ limited to 0 < ¢ < n throughout this paper. We call the
polynomial x™ + (x -+ 1)* the toggle register polynomial.

The restriction 0 < t < n eliminates the cases t =0 and t =n. If £ = (),
the toggle register degenerates into a loop of n delay flip-flops, which has been
studied by Golomb (1967, pp. 118-122, 171-175). The state diagram of this
configuration consists of disjoint cycles that all have short periods. If the loop
contains an even number of complementations, the maximal period is z, and it
it contains an odd number of complementations, the maximal period 1s 2n.
If t — n, the toggle register reduces to a loop of » trigger flip-flops, whose state
diagram consists of disjoint bushes rather than disjoint cycles. The number and

structure of the bushes can be determined by a technique given by Crowell (1962)
and Gill (1966).

PRELIMINARY RESULTS

The factorization of x™ + (x + 1)"~* can be obtained from the factorization
of x» ++ (x -+ 1)!in the following way. The reciprocal polynomial of x™ -+ (x + 1)’
is a"tx -+ 1)+ 1, and the reciprocal polynomial of " + (x + 1)"* 1s
x'(x - 1)"~t - 1. Each one of these reciprocals can be obtained from the other
one by substituting x -+ 1 for x, either in the polynomial itself or in its factoriza-
tion. Since this substitution preserves the degree of each factor, the factorization
obtained in this way is complete, although the period of an irreducible derived
factor may be different from the period of the irreducible factor that generated it.

This construction effectively reduces the problem of the factorization of
x" -+ (x4 1)t for 0 < t < n to the problem of the same factorization for
0 < t < n/2. Since &” + (x + 1)t and x" -+ (x + 1)*~* always have the same
number of irreducible factors, a” + (x -+ 1)* is irreducible if and only i
x" + (x + 1)"t is irreducible.

The factorization of the toggle register polynomial is further simplified by
two theorems, the first of which depends on the following lemma:

LemMA 1. The toggle register polynomial x™ + (x + 1)* does not contain a
first-degree factor.
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Proof. Every root of a first-degree factor of x™ - (x - 1)! 1s also a root of
x" -+ (x -+ t).. The only first-degree polynomials are ¥ and x -} 1, which have
the roots 0 and 1, respectively. Neither O nor 1 is a root of f(x) = x” -+ (x + 1)},

since 7(0) = f(1) = 1.

THEOREM 1. The toggle register polynomial x™ - (x - 1) contains a repeated
factor if and only if 2 | (n, t), and in that case x™ -+ (x -+ 1)' is a square.

Proof. 'The proof is divided into three cases.

Case 1. n =t = 0mod 2.Inthiscase,a™ + (x + 1) = [x"/2 - (x 4+ 1)'/?]?,
and the result follows.

Case 2. n -+ t = | mod 2. Here any repeated factor of f(x) = ™ -+ (x -+ 1)
1s also a factor of its formal derivative f'(x) = na™1 4 ¢(x 4+ 1)'1. Since only
one of n and ¢ is odd, f'(x) is either a power of x or a power of x -~ 1, both of
which are relatively prime to x” - (x + 1)* by Lemma 1. Hence, there cannot
be a repeated factor in this case.

Case 3. n =1 = 1mod2. Any common factor of f(x) and f'(x) 1s also a
factor of f(x) + xf'(x) =2+ (x + 1) + x[x* 1+ (v + 1)) =(x 4+ 1)* +
x(x 4+ 1)1 = (x 4 1)*1 which is relatively prime to x" -+ (x -+ 1)* by Lemma 1.
Hence, there is no repeated factor in this case.

THEOREM 2. If (n,t) > 1, & -+ (x + 1) s divisible by a toggle register
polynomial of lower degree.

Proof. 'T'he assertion follows from a -+ b | @* -+ b* for k£ = 1, where we take
R=(m,1), a = ™", b = (2 -+ 1)*,

For broad classes of polynomials, the conclusion can hold even if (n, ) = 1.
To see this, reduce n and ¢ modulo 2™ — 1. If the resulting polynomial is
divisible by an irreducible polynomial of degree m, that polynomial also
divides ™ - (x -+ 1)t A specific example 1s &% - (x -+ 1)18) which 1s divisible

by at + (x + 1)%

THE ToGGLE REGISTER PoLyYNOMIAL AND ITS CORRESPONDING T RINOMIAL

In this section we show that for (n, ) = 1, all of the properties of the toggle
register polynomial x” -+ (x 4 1)* can be derived from the properties of its
corresponding trinomial x" —+ x* - 1.

LEMMA 2. Let « be aroot of x™ | x* + 1. Then ot is a root of x™ + (x + 1)t

Proof. Since a™ 4+ ot 4+ 1 = 0, we have o” = «af 4 1. Then by substitution,
(a)® 4+ (af + 1)t = (a)® + («®)! = 0, and therefore atisarootof x™ -+ (x -+ 1)%
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Lemma 2 provides a means of beginning the factorization of the toggle
register polynomial from the factorization of x* 4+ x* 4 1. In general, the
factorization obtained in this way is not complete. If (n, ) = 1, however, the
factorization is complete. Theorem 3 is a statement of this fact.

T'HEOREM 3. If(n, t) = 1, each irreducible factor of degree m of x™ -+ (x + 1)t
15 the minimal polynomial of the tth power of any root of a unique irreducible factor
of degree m of x™ + x' | 1.

Proof. Let « be a root of order ¢ of an irreducible factor of degree m of
x" + x* 4 1. Then «f 1s a root of x” | (x + 1)! by Lemma 2, and «f has order
q/(q, t) and degree M, a divisor of m. Since (n, t) = 1, we have M = m, which
can be shown as follows. By the definition of degree, ¢/(q, t) | 2 — 1. Hence
q | (g, t)(2™ — 1), which implies that g | #(2™ — 1). The field element af + | = "
also has degree M, so in a similar way we have ¢ | n(2™ — 1). Therefore
q | (n, t)(2* — 1), which implies that ¢ | 2 — 1. This happens if and only if
m | M. The requirements that m | M and M | m imply that M = m. Thus the
minimal polynomial of «f has degree m. Every root of the irreducible factor of
a™ —+ x' ] generates the same irreducible factor of a® + (x 4+ 1)f, since the
tth powers of the conjugates of « are the conjugates of of.

Two distinct irreducible factors of x™ - x* 4+ 1 cannot generate the same
irreducible factor of x” 4 (x -+ 1) To see this, let w? be a root of an irreducible
factor of degree m of x™ + n* - 1, where w is any primitive element of GF(2™).
If there exists a different irreducible factor of x™ 4 xt - 1 that generates the
same factor of x" - (x -+ 1), it must be of degree m, as shown above, and
therefore it has a root w? that satisfies (w?)! = (w9, by Lemma 2. Hence
(wP=9)! = ]. But (w?)! = (w?! if and only if (w?)! 4+ 1 = (w9 + 1, which
implies that (w?)"* = (w?)", since w?” and w? are both roots of x" + x* -} 1.
Therefore (w?-9)” = ]. Taking « = w? 9 we have af = 1 = o®. Since the
order of « divides both 7z and ¢, it must divide (%, t) = 1. Therefore the order
of a1s 1, which implies that « = w?-% = 1. This is true only if w? = w? which
contradicts the hypothesis that the irreducible factors of x® -+ xf -+ 1 are distinct.

The possibility of repeated factors is ruled out by Theorem 1. Thus, the
theorem is proved.

COROLLARY 1. [If (n,t) = 1, the period of x™ -+ (x |- 1) divides the period

Uf X" e .I't "F-‘ 1

COROLLARY 2. If (n,t) = 1, a" 4 (x + 1)* and x™ + x* -+ 1 have the same
number of irreducible factors.

Using Theorem 3, we can obtain the cycle structure of a toggle register poly-
nomial from the factorization of its corresponding trinomial if (n,¢) = 1 by
calculating the period p of each irreducible factor of x* 4 (x 4 1)* from the
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period g of each irreducible factor of ¥ <+ x* -~ 1 by p = ¢/(g, t). Golomb (1967)
has given a table of the complete factorization of x" -+ n* -+ 1 for n << 36.

Corollary 2 implies that the result of Swan (1962), that gives the parity of
the number of irreducible factors of x” + x* - 1, also gives the parity of the
number of irreducible factors of x" + (x + 1) if (n,¢) = 1. If we combine
Theorem 2 with Swan’s corollary 5 (1962, p. 1105) we get the following result,

Let0 < t < nf2(forn[2 < t < n,substituten — tfort). Thenx” + (x -+ 1)
1s reducible in the following cases:

(1) n = 0mod 8,

(2) n= +1mod8, ¢t =2,

(3) n=2mod8, ¢t % —1 mod4,
(4) n= —2mod 8, t = | mod 4,
(5) n= 4+3mod8, t +# 2,

(6) (n,t) > 1.

In all other cases x" - (x -+ 1)! has an odd number of irreducible factors, all
of which are distinct.

Case 1 is interesting because it gives a class of degrees for which no irreducible
toggle register polynomials exist. To exhibit other classes of reducible toggle
register polynomials, we can apply to Case 5 the fact that an irreducible poly-
nomial of period ¢ that divides x” -+ x* + | also divides a™ & x* - | if and
only if m = n mod ¢. In particular, the toggle register polynomial is reducible if

(1) n =13 or 19 mod 24,

(2) n=3,13,27, or 45 mod 56, n > 3,

(3) =» = 53, 69, 83, or 99 mod 120,

(4) n = 45,59, 4+67, +69, +117, 133, 195, or 245 mod 248, n > 5,

and so forth. By Theorem 6, the cases listed above are also cases for which
x" + x' - 1 1s imprimitive.

IRREDUCIBLE TOGGLE REGISTER POLYNOMIALS

We are now in a position to present necessary and sufficient conditions for the
irreducibility of the toggle register polynomial.

THEOREM 4. The toggle register polynomial x™ -~ (x -+ 1) s wrreducible if

and only if x™ -+ xt - 1 is irreducible and (n, t) — 1.

Proof. If x™ 4 (x -+ 1)* 1s 1irreducible, (n,¢) = 1 by Theorem 2, and
therefore x™ 4 x* -+ 1 is irreducible by Corollary 2. On the other hand, if
x" -4 x* 4+ 1 1s 1wrreducible and (n,2) =1, a" - (x 4+ 1)* 1s 1rreducible by
Corollary 2.
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In certain cases, the following two theorems simplify the task of finding
irreducible toggle register polynomials.

TheOREM 5. If (2" — 1, n) = 1, x™ + (x -+ 1)* is irreducible if and only if

x4 xt — | s irreducible.

Proof. If x™ - x - 1 is irreducible, it has a root « in GF(2"). Let the order
of « be ¢g. Then (¢,n) = 1, since ¢|2" — 1 and (2* — 1,n) = 1. Thus the
order ¢/(q, n) of a" is g. Therefore the degree of a” is n, the degree of o, and the
degree of o - | is also n. But af = ™ 4 1, since « is a root of x® -+ xt + 1.
Thus a' 1s a root in GF(2") of degree n of ™ 4 (x 4 1)! by Lemma 2, which
implies that x" - (x + 1) is irreducible. On the other hand, if a” -+ xt - |
1s reducible, ¥ - (x -~ 1)! is reducible by Theorem 4.

COROLLARY 3. [If m s a prime or a prime power, x" -+ (x - 1)t is irreducible
if and only if x" —— x' -~ 1 is irreducible.

Proof. Let n = p™, where p is a prime. Every prime factor of 2" — | is of
the form kp — 1, and therefore relatively prime to p. Thus (2* — 1, n) = 1,
and the conclusion follows.

LemMva 3. Ifk > 1, ¥ - &% 4~ 1 is imprimitive.

Proof. If x*n - x* ] is primitive, it has a root « in GF(2*") of order
2kn — 1. By substitution, o* is a root of A" - xt 4 |.

Since x*” — x** - | 1s primitive, 1t 1s irreducible. As a consequence, x" -
af 1 1s also irreducible, since if f(x) divides a™ -+ xt -+ 1, f(x*) divides
afm L ykt 1. Hence the order (2% — 1)/(2** — 1, k) of of must divide
2" — 1. This implies that 2¥* — | divides k(2" — 1), which is not true for any
k> 1.

THEOREM 6. If x™ — xt -1 1 is primitive, x™ - (x -+ 1)t is irreducible.

Proof. It x" 4+ x' -1 is primitive it 1s irreducible, and (n,¢) = | by
Lemma 3. Hence, v + (x —+ 1)" is irreducible by Theorem 4.

PRIMITIVE TOGGLE REGISTER POLYNOMIALS

If the toggle register polynomial 1s primitive, the state diagram of a corre-
sponding toggle register consists of a long cycle of period 27 — | and a short
cvele of period 1. If in addition the toggle register is taken to be linear (that is,
if all complementations are removed from the loop), the sequences that appear
at the output ot each flip-flop all satisty the difference equation that corresponds
to the reciprocal of the toggle register polynomial x* -+ (x 4+ 1)". Therefore
cach one of these sequences is just a phase shift of any other one. Thus, dis-
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TABLE 1

Complete List of n and ¢ for All Irreducible Toggle Register Polynomials
x" 4+ (x 4+ 1)t through n = 137*

n t n t
£l | 63 1,5, 11(7), 31, 32, 52(7), 58, 62
) 58/ 63" 18:32 33 47
4 :1.:3(3) 68 9(3), 33(3), 35(5), 59
S @y 717769, 18.:20: 35.:36; 51,53.62.65
6. 1,9 13 25,28, 31,42 45,48
Te A5 3:4; 6 74 35(3), 39(3)
9 1(7), 4,5, 8(7) 76  21(3), 55(15)
10 3(3), 7 79 9,19, 60, 70
1k 29 81 4,16, 35(7), 46, 65, 77(7)
12 3(5),.7(35) 84 5(5), 11(5), 13(13), 71, 73(5), 79(5)
14 5(3), 9(3) 86 21(3), 65(3)
15. 1.4,707),'8, 11, 14(7) 87 13,74
¥E= 3,576, 11 1214 89 38, 5l
18 7(7), 11 92 21(15), 71(5)
20 3(3), 17 93 2,91(7)
2h 219 94 21(3), 73
22030 163) 95 11, 17.778. 84
23 5,914, 18 97 6,12, 33, 34, 63,64, 83, 91
29 37,18, 22 98 11, 27(3), 71, 87(3)
28 "1(13),:3(3), 9(3); 13, 15(15),19, 100 19(41), 37, 49(11), 51(33), 63(3),
25(5), 27(15) 81(123)
29 - 2:27 102 29(3), 37(3), 65(3), 73(3)
30 1(99), 29(99) 103 9, 13, 30, 31, 72, 73, 90, 94
3L 3 6..7,.13,18, 24, 25. 28 105 4(49), 8(7), 16, 17, 37, 43, 52, 53,
33 10(7), 13, 20, 23(161) 62(31), 68, 88, 89, 97(7), 101(49)
34 7(3), 27(3) 106 15(3), 91
3233 108 17(5), 31, 77(7), 91(455)
36 11, 25(5) 111 10, 49(7), 62, 101
39 4, 8, 14(7), 25, 31, 35(7) 113 9, 15, 30, 83, 98, 104
41 3, 20, 21, 38 118 33(3), 45(3), 73, 85
44 5(15), 39(15) 119 8§, 38, 81, 111
46 1(3), 45(3) 121 18, 30(23), 91(23), 103
a7 5.14,20, 21,26,27,33; 42 123 2, 121
49 9, 12, 15, 22, 27, 34, 37, 40 124 19(3), 37, 45(15), 55(5), 69(15),
52 3(3), 7(3), 19, 21(3), 31, 33(3), 79(5), 87(3), 105(15)
45(15), 49 Y27, 1B N 063,.64, 97,112,120, 126
55 7(23), 24, 31(31), 48(23) 129 35, 31, 46, 83, 98(7), 124
57 4, 7(7), 22, 25(7), 32(7), 35(7), 130. 3(3), 127
50, 53(7) 132 17(35), 29, 103, 115(805)
58 19, 39(3) 134 57(3), 77
60 1, 11(11), 17(1155), 23(5), 37(35), 135 11, 16, 22, 29(151), 106(151), 113,
43(1155), 49(7), 59 119(7), 124(31)
62 29(3), 33(3) 137 ' 21,35, 57, 80, 102,116

* For each imprimitive polynomial, the index is given in parentheses.
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regarding the trivial I-cycle, the output sequence associated with the toggle
register i1s unique. The sequence exhibits randomness and autocorrelation
properties that have been studied by Zierler (1959) and Golomb (1967). Lemma 2
implies that the sequence consists of a ‘“‘decimation by #” of the sequence
generated by the reciprocal of the corresponding trinomial; see Selmer (1966).

Theorem 7 gives necessary and sufficient conditions for the primitivity of
the toggle register polynomial.

Tueorem 7. The toggle register polynomial x™ - (x + 1)t is primative if and
only if x® + x' -+ 1 1s primitive and 2" — 1,1) = 1.

Proof. If x™ - xt - 1 1s primitive, it has a root « in GF(2") of order 2" — 1.
The order of of is also 2* — 1, since (2" — 1,¢) = 1. But of 1s a root of " -
(x -+ 1)%, by Lemma 2. It follows that x" + (x - 1)* is irreducible with period
27 — ], that 1s, it 1s primitive.

On the other hand, if x® 4 (x | 1)! is primitive it is irreducible. Thus,
x" 4+ xt -+ 1 1s wrreducible and (n, t) = 1 by Theorem 4. The period of x" -
x* - 1 1s a multiple of 2% — | by Corollary 1, and therefore equal to 2" — 1,
since the period of an irreducible polynomial of degree n divides 2" — 1.

COROLLARY 4. If nis a prime, x" + (x -+ 1) is primitive if and only if x" -
xt -1 is primitive.

Proof. 1f n 1s a prime, every prime factor of 2" — 1| is of the form kn + 1,
and therefore relatively prime to #. Thus (2" — 1, #) = 1, and the conclusion
follows.

THE ACCOMPANYING LiIST

The list that accompanies this paper (Table I) gives all irreducible toggle
register polynomials and their indices (index = (2" — 1)/period) through
degree 137. The factorizations of 2" — ] used to generate the list are from
Riesel (1968), with one exception. The factorization of 2137 — 1 is from Brillhart
et al. (1975).

The list can be extended by the use of Zierler and Brillhart (1968, 1969) which
gives all irreducible trinomials through degree 1000, and the periods and indices
of those for which the factorization of 2 — 1 was known at the time the paper
was written. Some primitive toggle register polynomials of very high degree
can be found in Zierler (1969), which gives a list of all irreducible trinomials for
the first 23 values of n for which 2" — 1 is prime. Since 2" — | prime requires
n prime, Corollary 4 implies that Zierler’'s list 1s a list of primitive toggle
register polynomials.
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